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Abstract—In volume visualization transfer functions are widely used for mapping voxel properties to color and opacity. Typically,
volume density data are scalars which require simple 1D transfer functions to achieve this mapping. If the volume densities are vectors
of three channels, one can straightforwardly map each channel to either red, green or blue, which requires a trivial extension of the 1D
transfer function editor. We devise a new method that applies to volume data with more than three channels. These types of data often
arise in scientific scanning applications, where the data are separated into spectral bands or chemical elements. Our method expands
on prior work in which a multivariate information display, RadViz, was fused with a radial color map, in order to visualize multi-band 2D
images. In this work, we extend this joint interface to blended volume rendering. The information display allows users to recognize the
presence and value distribution of the multivariate voxels and the joint volume rendering display visualizes their spatial distribution. We
design a set of operators and lenses that allow users to interactively control the mapping of the multivariate voxels to opacity and color.
This enables users to isolate or emphasize volumetric structures with desired multivariate properties. Furthermore, it turns out that our
method also enables more insightful displays even for RGB data. We demonstrate our method with three datasets obtained from
spectral electron microscopy, high energy X-ray scanning, and atmospheric science.

Index Terms—Volume rendering, volume visualization, transfer function, battery, multivariate data, multi channel data, color mapping.

✦

1 INTRODUCTION

VOLUME rendering is a widely used technique for the
visualization of 3D scalar fields in form of 2D projec-

tions. Invented more than 20 years ago, transfer functions
have been an integral part of volume rendering [1], [2].
They are used to map the volume data to color and opacity
in order to emphasize important structures and suppress
unimportant ones, affording users a better understanding
of the data. Clearly, the ability to design effective transfer
functions is crucially important and has been the subject of
much research.

Most transfer function design techniques assume that the
volume data are scalar quantities, and so the visual proper-
ties opacity and color are only driven by a single variable.
Kniss et al. [3] added the gradient magnitude calculated
from the data and showed how a two-dimensional transfer
function augmented by a set of manipulation widgets can
better delineate intricate surfaces of volumetric structures.
Yet, this technique operates only in the 2D space spanned
by the scalar data and their gradient magnitude.

We advance a fundamentally new technique by which
users can design transfer functions in data spaces that span
more than two dimensions. These types of data occur in
applications that generate data from multiple modalities
or spectral scanning. Our driving application resides in
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material science but our method can also be applied in other
fields and applications that produce data where volume el-
ements, or voxels, have multiple spatially co-located values,
such as multi-modal medical imaging or scientific simu-
lations. All of these applications typically produce several
volumetric datasets with complementary information, e.g.,
the percentage of chemical elements present at each voxel.
The goal of our research is to allow scientists to visualize
these data together and so directly reveal the composition
and interaction of the materials resident at the voxels.

The classical workflow of most scientists in these appli-
cation areas is to visualize each volume dataset, or channel,
individually and then slowly build up a composite image.
This sequential process makes the analysis process rather
tedious and labor-intensive. While mapping three material
or modality channels to RGB could potentially speed up this
process, there are often more than three such channels that
make it infeasible to go this route in general.

To address these shortcomings we devised RadVolViz, a
visual analytics system to help users visualize multivariate
volumetric data in a direct and holistic manner. This is a
difficult problem from two perspectives: (1) each pixel in
a volume rendered image is an aggregation of volume sam-
ples along a rendering ray and so forms a composite of infor-
mation, and (2) each volume sample itself is a composite of
multiple volume channels. To help users untangle this mix
of information we provide several displays, and interactions
defined on them, that allow users to first gain an overview
of the data and then drill into details autonomously. Shown
in Figure 1, RadVolViz has two fully linked displays: (1) an
information display that allows insight on the multivariate
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Fig. 1. RadVolViz system interface with all major displays and functionalities, here using the Chemically Sensitive Electron Tomography Dataset.
(C) is the rendered volume dataset; (B) is the interactive multivariate information display which doubles as the volume transfer function editor (MTE
for short); (A) is used for manual coloring within the MTE; (D) controls the MTE’s lens operations; (E)-(G) are various control elements to tune
rendering parameters; (H) is the interface for volume clipping; (I) is a frames/s rendering performance gauge.

aspects of the data and (2) a volume rendering display that
visualizes the spatial aspects. Several interactive functions
allow users to navigate and explore data aspects of interest.

Our paper is organized as follows. Section 2 gives
background on our driving domain application. Section 3
discusses related work on transfer function design. Section 4
presents our design goals. Section 5 describes our approach
and implementation. Section 6 presents a set of use cases.
Section 7 compares our approach with other modalities.
Section 8 presents an evaluation. Section 9 provides a dis-
cussion. Section 10 offers conclusions.

2 DOMAIN BACKGROUND AND MOTIVATION

Our domain application is in material science, in particular,
to support the quest for more efficient and safer batteries.
Batteries are a key driver of many technologies, such as
smartphones, electric cars, data centers, and so on. But
making strides in battery technology takes an enormous
amount of experimental research which in turn requires
imaging and subsequently, visual analytics.

Lithium-ion is still considered to be one of the lightest
and most efficient battery solutions. It enables energy den-
sities proportional to a cell operating voltage and storage
capacity [4]. A higher operating voltage requires cathode
materials that are of larger reversible capacity and can
withstand higher charging voltages. However, batteries op-
erating at higher voltages undergo various harmful phase
transformations and interfacial reactions [5], which raise
safety concerns and degrade battery life [6] as well.

The structural stability at higher operating voltages can
be improved by elemental doping [7]. Scientists analyze the
dopant’s spatial distributions to (1) understand the exact
role the dopant plays in stabilizing the chemical environ-
ment and (2) optimize the design of the battery’s doping

composition. Especially important is to gain a full under-
standing of the compositional and chemical heterogeneity
that is evolving both on the battery surface and within its
material. To obtain this insight scientists perform in-depth
qualitative and quantitative evaluations on the doping par-
ticles during the electrochemical changes.

Since the electrochemical interfaces at the surface com-
pletely change the chemical properties associated with the
battery, the study of structural compositions on material
surfaces has attracted tremendous research efforts from
material scientists. To study the emergent material phases
and to quantify the chemical complexity that has occurred
due to interfacial reactions at higher voltages, scientists use
multimodal hard X-ray imaging at high spatial resolutions
[5]. These scans then form the basis for the study of the gen-
erated material phases and the complex chemical composi-
tions at a finer scale. It is especially the emerging interfacial
reactions that lead to the formation of additional material
phases at the grain boundary; these play an important role
in determining the ultimate electronic and ionic transport
properties of the battery material [8].

Besides the slow data acquisition speed, it is the com-
plexity of the data sets that makes data analysis, visualiza-
tion, and information extraction a daunting task. Hovden
et al. [9] discuss a STEM tomography method that provides
quantifiable internal morphology and spectroscopic detec-
tion of elements using 3D visualization tools [10], but this
method does not scale beyond three channels; analyzing
more than three channels is tedious and labor-intensive.

In fact, scientists not only require a visualization tool
that can render a multivariate data set to highlight subtle
changes in physical and chemical quantities, but they also
need a method that allows them to perform the analysis in
an autonomous manner. Having these capabilities available
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would significantly reduce the time required for analyzing
the imaging data, and potentially allow for new discoveries
in the evolution of a wide range of materials [11].

These limitations have motivated us to develop a
method that can (1) visualize all channels simultaneously
to allow scientists to examine the structural composition
holistically in one view, and (2) perform the analysis in
a semi-automated way to significantly reduce the time to
insight.

3 RELATED WORK

The topic of transfer function is one of the most heavily
studied subjects in volume rendering [12], [13]. They can be
1D (scalar), 2D, or multi-D, similar to the associated volu-
metric data. 1D transfer functions are most commonly used,
especially in commercially and publicly available software
such as ParaView [14], Tomviz [10], and ImageVis3D [15].
When the volume data have just one channel then a simple
transfer function interface can assign color and opacity to
scalar data ranges, most often via a set of curves. If the
volume densities are vectors of two or three channels, one
can straightforwardly map each channel to either R, G, or B,
which requires a trivial extension of the 1D transfer function
editor. The complexity increases, however, when the data
dimension of the volume density exceeds three.

To address this complexity, Maciejewski et al. [16] pro-
pose an automatic generation of transfer functions using 2D
clustering in feature space; temporal variations are encoded
in a histogram volume. Tzeng and Ma [17] devise a self-
organizing data analysis technique to find clusters for which
users can then select color and opacity values. Wang et al.
[18] use hierarchical clustering for a similar goal.

Others use dimension reduction to first map the high-
D data to lower-D and then design the transfer functions
in this reduced space. Kniss et al. [19] achieve dimension
reduction through a graph-based technique. Haidacher et al.
[20] reduce multi-D data into a single fused representation
which they then map through a gradient magnitude two-D
transfer function. Kim et al. [21] use a mapping of gradient
magnitude into a two-D transfer function using Isomap and
PCA as a dimension reduction technique. Isomap dimension
reduction is also used by Abbasloo et al. [22].

While these 2D space embeddings can reveal the rela-
tions between the volumetric data samples, they lose their
associations with the channels the dimensions represent.
One solution is that by Mörth et al. [23] who encode the
local multivariate data, or parameters derived from them, as
a glyph, such as a radar plot, and display them on a volume
slice. Users can then appreciate the homo/heterogeneities
of different volume regions by comparing the similarities in
the field of glyphs. While the glyphs directly encode the
local values of the multivariate volume, their spatial ex-
tent reduces the spatial resolution. In contrast, colorization
can retain the full resolution but an extra data display is
needed to show the multivariate data values and to drive
the colorization. Guo et al. [24] use parallel coordinates
(PCs) to show the data distributions of each channel and
MDS to show the dimension-reduced data, all integrated
seamlessly for flexible feature classification, while Wang
et al. [25] use PCs in conjunction with a multi-resolution

decomposition of the spatial domain. However, PCs have
certain shortcomings, as has been pointed out by Bertini et
al. [26]. While PCs can show quantitative information well,
they tend to clutter and are tedious to manipulate.

We have compared our approach with a simplified ver-
sion of Wang et al. in Section 7. Apart from the different
information visualization interface the approach by Guo et
al. also differs from ours in that volumetric structures are
first identified via system-assisted visual inspection in (grey-
scale) information space, then colorization is applied, and
finally, the volume is rendered. Conversely, in our system
colorization is immediately and automatically applied and
the volume is subsequently rendered. It allows users to
recognize clusters in information and in volume space at
the same time. In this way, they gain a good idea of what
the structures look like in the dual space, and only then
they need to delineate and colorize more defined structures
in information space and render them in volume space.

Bertini et al. suggest RadViz [27] as an interface with
better data manipulation capabilities via brushing (and less
clutter), but trading this off with weaknesses in quanti-
tative data display. We chose a RadViz-type information
display since we preferred its brushing capabilities while
alleviating the less specific quantitative information with
visual feedback in the spatial display. We also conducted
experiments that use parallel coordinates to assign colors
to volume samples but found that the color mapping led
to a reduced differentiation of important volume structures.
Section 7 provides some of these experimental results.

3.1 Automation
Since the design of transfer functions is a time-consuming
and tedious task, several data-driven approaches have been
proposed to generate either fully or semi-automated transfer
functions requiring little to no user interactions. In this
vein, Pfaffelmoser et al. [28] use the spatial deviation of
surface points from the mean surface to color the surface,
Lundström et al. [29] segment multi-dimensional transfer
functions by measures derived from intensity values or spa-
tial relations, Wang et al. [30] let users modify an importance
function conveyed via the saliency of the color, Bramon et al.
[31] employ notions of informativeness and informational
divergence, Sereda et al. [32] apply explorable hierarchi-
cal clusterings, Maciejewski et al. [16] use 2D clustering
of values and gradients, Ip et al. [33] use a hierarchical
exploration of histograms to choose segments hierarchically,
and Liu et al. [34] project high-D data to lower dimensions
to guide the user through variables; multiple projections are
then used to design the transfer functions. Finally, Tzeng et
al. [35] and De Moura Pinto et al. [36] achieve dimension
reduction through unsupervised learning and then assign
voxel properties in the resulting low-D space.

3.2 Coloring
An important aspect of transfer function design has been to
shade the volume data with realistic looking colors, in order
to emphasize important parts and isolate less important
structural portions. Muraki et al. [37] used realistic looking
colors which they then transferred to photographic Visible
Human datasets. Lu et al. [38] used colored example images



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (ACCEPTED 2023) 4

Fig. 2. System overview. A multivariate volumetric data set is loaded into the GPU pipeline. The pre-processing step sets up the information display.
Process A computes the correlation among the channels to determine their spacing on the display’s boundary and then embeds the data into the
circular information display. Next, S is a de-cluttering step. It down-samples the embedded points while preserving their spatial distribution. The
rendering can now begin (process I) which streams the volume data through the information display, interpolates the colormap, and performs alpha
compositing with the emerging volume display until all data have been streamed through. Users can brush or paint with the transfer function editor,
change the parameters of the compositing pipeline, or perform spatial clipping to highlight volumetric structures of interest in the rendering.

to produce a 3D volume with a similar look using texture
synthesis. Kindlmann et al. [39] used hue-balls for coloring
and a 2D barycentric space of anisotropy for the opacity
of data. It was later extended for use within barycentric
colormaps by Kindlmann et al. [40]. Welsh et al. [41] use
texture matching to transfer RGB color to grey-level volu-
metric data.

4 DESIGN GOALS

Upon embarking on this project we conducted a series
of interviews with several domain experts in the area
of nanoscale imaging, microscopy, and spectroscopy. The
modalities they typically use are hard X-ray and transmis-
sion electron microscopy. We find that the goals of these
scientists are quite general and will likely apply to other
domains as well. As such our methodology is designed to
be widely applicable to any multivariate volumetric data.
Based on these interviews we derived five design goals:

DG1: Visualize all channels simultaneously. This was
identified as a major requirement as it would address a main
shortcoming of the current state of the art. It would allow
scientists to better and more expeditiously appreciate the
spatial composition and chemical heterogeneity in the data.

DG2: Enable semi-automated data-driven color label-
ing. Obtaining an automatically-generated meaningful first
impression about the data overcomes cold start problems
in data analytics. A data-driven color mapping scheme that
could automatically highlight different chemicals and their
compositions seems a suitable approach to achieve this goal.

DG3: Support selection and filtering to control display
complexity. As discussed, aggregation of volumetric mul-
tivariate data into a colored 2D image is an inherently ill-
posed task. A common way to deal with this problem is to
provide a set of interactive functionalities that allow users
to explore desired aspects of the data autonomously.

DG4: Enable manual labeling (brushing). Once users
have gained a good understanding of the volumetric struc-
tures they require a method by which they can express these
findings via concrete labeling. This could be achieved by a
manual brushing tool operating directly on the data.

DG5: Make the tool platform-independent. Researchers
use a variety of OS platforms and file systems. To achieve
wide applicability our tool should be browser-based.

5 APPROACH AND IMPLEMENTATION

Figure 2 gives an overview of our overall system. The
first stage is the formation of the circular RadViz-inspired
information display which consists of two steps: (1) place
nodes representing the channels in proper positions on the
disk’s boundary, and (2) embed the multi-D channel data
into the disk’s interior (Figure 2 (A, S)). At this point, we
have a multivariate information visualization of the volume
data (DG1). The HSL colormap fused with the circular infor-
mation display establishes the link to the volume rendering
pipeline by ways of its function as a multivariate transfer
function editor (MTE). We can now engage in the second
(iterative) stage – the exploratory volume visualization. This
stage uses the information display mapping to assign colors
and opacities to the samples interpolated from the volume
(Figure 2 (I)), supported by various interactive operators.

5.1 Background: RadViz Inspired Information Display
In the following, we provide a brief summary of the rel-
evant features of the colormap-fused information display
developed by Cheng et al. [42] which serves as the backbone
of our multivariate volume visualization pipeline. Pictured
in Figure 1(B) and in the box labeled ’MTE’ in Figure 2,
it consists of a circular multivariate information display
fused with a radial-slice color map, such as HSV, HSL, or
HCL. Cheng et al. used this interface to interactively col-
orize multi-channel 2D images, acquired either with multi-
spectral cameras or generated from multivariate choropleth
maps. There was no support for volumetric data which
greatly simplified the mitigation of the aforementioned ag-
gregation problem (see Section 1).

By default, the channel nodes on the display’s boundary
are equidistantly spaced such that each node will map to
a distinct ”primary” color. Alternatively, the nodes can be
spaced in terms of the correlation similarity of the chan-
nels. Choosing this spacing results in a configuration where
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Fig. 3. The polygonal mapping region of RadViz and the extension to a
circle to enable the full use of the HSL color space (redrawn from [43]).

correlated channels are mapped to similar colors. Here, one
would first calculate a correlation matrix of the channels
and then compute an efficient ordering of the nodes via
a Hamilton Cycle algorithm [43]. To calculate the optimal
spacing between the nodes on the MTE circular boundary
we use the metric (1 − ρij) where ρij is the correlation of
attribute i and j as follows:

sij =
1− ρij∑

k,l∈HC (1− ρkl)
sMTE

Here, sMTE is the MTE’s circumference and sij is the
distance between two attributes i,j adjacent in the Hamilton
Cycle HC . The spacing so obtained groups similar attributes
close together, which are then assigned similar colors. This
is in some sense a dimension reduction, saving any distinct
primary colors for more independent attributes.

With each of the channels assigned a specific position on
the circle’s boundary, RadViz uses the following equation to
map a data point to the circle’s interior:

Px =

n∑
j=1

ajvj where aj = wj/

n∑
k=1

wk

Px is the location of the mapped data point, the wj are the
values of the n-D data vector, and the vj are the spatial
locations of the channel nodes on the circle boundary. This
mapping embeds the points into a polygonal shape defined
by the locations of the channel nodes. To accommodate the
full circular disk space of the color map, Cheng et al. [42]
devised a stretching formula where a point P inside the
polygon is translated to a point P ∗ defined by OP ∗ = OP ·
OB/OA, where O is the center of the circle and A and B
are the intersection points of the line OP with the polygon
and the circle, respectively. This is illustrated in Figure 3.

We use the above equation for two purposes: (1) to
map the original data points for the visualization of their
multivariate distributions, and (2) to lookup/interpolate
the RGB colors for the vectors generated by the sampling
process in the multivariate volume rendering.

5.1.1 Dealing with Ambiguities
The first potential ambiguity stems from the circumstance
that both RadViz mapping and interpolation only observe
the relative proportion of a data point’s channel, as opposed
to its absolute value (the magnitude, Euclidean norm). As a
remedy, we provide a set of sliders (bottom two sliders in
(Figure 1(E))) in the volume rendering interface that allows

Fig. 4. Lens filtering using the LiCoO2 dataset described in Section 6.3.
(a) the information display with the lens, (b) the volume rendering of the
samples covered by the lens and (c) of the samples outside of the lens.

users to choose a magnitude range of interest which renders
all samples that fall outside this interval invisible. This is
similar to opacity-culling in standard volume rendering.

The second ambiguity arises because the RadViz map-
ping is not unique; vectors with different value composi-
tions may map into similar neighborhoods. Cheng at al. [43]
devised three jointly applied techniques by which this am-
biguity can be markedly reduced. Two of these require a
non-linear optimization of the layout; they are not feasible
in our case since they do not allow for the color lookup
which requires a linear mapping. The third remedy is the
aforementioned correlation-based channel node positioning
on the RadViz boundary. It turns out that this can already
resolve a significant amount of ambiguity since it maps
similar colors to similar channels and consequently allocates
more space to other channels which reduce the potential of
dissimilar points being mapped into the same map areas.

5.2 Our RadVolViz Color Labeling Scheme
The need to support volumetric data required several non-
trivial extensions to Cheng et al’s original colormap widget.
It resulted in a new colormap widget we call Multivariate
Transfer Function Editor (MTE) which has two main new
features: (1) several interactive operators that allow users to
control the visual properties by which the channel mixtures
are visualized in the volumetric display (DG3), (2) a man-
ual brushing/coloring facility by which users can precisely
color-label the structures identified during the prior explo-
ration (DG4). The two color labeling modes (data-driven
and manual) can be selected via the radio buttons below
the MTE (see Figure 1(B)).

DG1 and DG2 were already largely supported by the
original colormap widget; they mainly required extensions
of the volume rendering engine we utilized (see below), a
sampling scheme to prevent the overplotting that resulted
from extending the data from images to volumes, and the
selection of an appropriate color space for the color map.
We now describe each of these components in closer detail.

Overdraw Management: The number of data points in
a volumetric dataset can easily overwhelm the MTE infor-
mation display and cause a high amount of overdraw and
clutter. To manage this overdraw, we follow the information
display mapping step by a stratified downsampling oper-
ation. The sampling is done such that the mapped points
preserve the spatial distribution of the original volume
data. For this purpose, we subdivide the display’s disk into
an array of square-shaped bins. The bin size can be set
via the BIN widget shown in Figure 1(G) and the overall
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Fig. 5. Rendering results due to various lens placements using the LiCoO2 dataset described in Section 6.3: (a) relatively homogeneous samples,
(b-f) samples with relatively high Titanium (b), Aluminum (c), mixtures of Aluminum and Cobalt (d), Cobalt (e), and mixtures of Titanium and Cobalt.

number of data points in the colorspace m can be set using
the POINTS setting. The stratified sampling in each bin is
determined from the total number of data points, M . Say,
the number of desired points is m, then the stratification
rate r = m/M · 100%. Each bin is randomly sampled such
that r% of the original points remains. Bins with just a few
points are left unsampled to maintain awareness of outliers.
In practice, we use a grid of 6× 6 bins which in conjunction
with the aforementioned sampling scheme typically results
in about 500 points being left on the map.

Data-Driven Color Labeling: The MTE information dis-
play (1) informs the user about the multivariate distribu-
tions of the volume data, and (2) provides a color for each
multivariate (ray) sample generated by the volume renderer
(DG2) using the interpolation scheme outlined in Section
5.1. To determine the color we chose to utilize a color
map derived from the HSL color space. While Cheng et al.
used the HCL color space, our switch to HSL was mainly
driven by our new application to volume data: (1) HSL has
a significantly more pronounced white point in the center
where voxels with equal values in all channels are mapped
into (see Figure 1(B)); we found that this helped to better
differentiate these special voxels in the volume display. (2)
HSL does not have color regions outside the circle; the HCL
space has such regions since it is a cut-out of the LUV
space. While Cheng et al. allow users to stop and expand
the HCL color space to the outside LUV regions for greater
color contrast, we experimentally found that this can lead to
inconsistent displays in the volume rendering.

The HSL space has a double cone topology and turns
into a disk if the lightness L is fixed. Hence, the MTE will
result in the ray sample’s Hue H and Saturation S while we
are still free to determine L. We have experimented with
different settings and found that typically L=0.55 showed
the best contrast All images in this paper use this level.

5.2.1 Interactions and User Interface
Although our tool is data-driven and configured automat-
ically (DG2), it includes a variety of interactive features to
allow scientists to explore the data (DG3) and then report
the results (DG4). We describe these utilities next.

Lens Filter: In order to control the mapping of data
points for any particular channel or multiple channels to-
gether, we devised a variety of filters that are blended into

the information display. One of these filters acts as a lens.
The lens is controlled by three parameters, namely LENS,
LENS RADIUS, and LENS MODE as shown in Figure 1(D).
LENS is used for selecting/deselecting the lens operation
in the information display, and the LENS RADIUS specifies
the radial extent of the circular lens region in the colormap.
The effect of the lens-selected region is determined by LENS
MODE i.e. INSIDE VIEW and OUTSIDE VIEW. While the
former is used to emphasize the effect of the region selected
in the volumetric structure (voxels selected inside the lens),
the latter isolates it.

Figure 4(a) gives an example of a lens selecting a subset
of points mapped in the MTE. In Figure 4(b) the points
within the lens are volume-rendered using the lens IN-
SIDE VIEW mode, while in Figure 4(c) the points that
lie outside of the lens are rendered using the lens OUT-
SIDE VIEW mode. Essentially the two modes produce two
complementary renderings of the volume which can be
convenient in volume exploration tasks. The lens can be
moved around the colormap via simple mouse drag interac-
tions which allow for easy material or material compound
focused volume explorations. Some examples are shown in
Figure 5 and further explained in the caption.

Correlation-Driven Mapping: Our tool also enables do-
main experts to dig deeper into the information display
and explore correlations both among the sample points
and among the channels and see these emphasized in the
visualized volume. The MODE widget as shown in Fig-
ure 1(G) has three options, RGB, GBC and DGBC. RGB
is an option reserved for three-channel density data; each
channel is mapped to R, G, or B; a trivial extension of the 1D
transfer editor. Option GBC is the mapping achieved when
the variables are spaced uniformly around the information
display boundary, while option DGBC places them spaced
apart in terms of their correlation (see Section 5.1).

Figure 6(a) shows the rendering outcome when channels
Ti, Co, and Al are directly assigned to the R, G, and B
channel, respectively (essentially three separate 1D transfer
functions), whereas Figure 6(b) is the rendering when Ti, Co,
and Al are assigned to an equispaced three-channel MTE
(similar to Figure 4 but without a lens). We confirm that
Figure 6(a) and 6(b) show the same structures at similar
colors, but Figure 6(b) seems to have better contrast, both
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(a) (b)
Fig. 6. Visualization of the 3-channel LiCoO2 dataset described in
Section 6.3. The three channels are Ti, Co, and Al. In (a) each channel
is directly assigned to a Red, Green, or Blue color, while in (b) the MTE-
based color mapping is used (in equispaced GBC mode). We observe
that the MTE-based mapping shows significantly more contrast.

in the interior and the exterior. This might be due to the
more spread out data distributions in the circular colormap.

Finally, we compare Figure 6(b) which uses a GBC-based
colorization with Figure 7 which uses DGBC. We observe
that DGBC gives Ti and Al more similar colors due to
their close correlation but spaces Co far apart since it is not
correlated to either of them at all. As a result, Co stands out
significantly more in the corresponding volume visualiza-
tion and the Al speckles in it are much more apparent.

Manual Color Labeling: This mode gives users the
ability to refine the color labels of material compound clus-
ters identified in the data-driven mode (DG4). The manual
brushing interface allows users to coordinate the labeling
with the real-time spatial feedback provided by the volume
display. We noticed that the scientists often started a session
with the data-driven interface (Figure 8(a)) to get an overall
idea about the dataset and then switched to the manual
brushing interface (Figure 8(b)) to elucidate the structures
precisely. An example for the results of such an activity is
shown in Figures 14(a) and (c).

The manual color labeling functionality allows users to
assign any desired color to a selected cluster of voxels. Two
widgets assist in this activity, No of Clusters and Polygon
Shape. The former lets users select the number of clusters to
brush, while the latter assists them in marking the bound-
aries of the brushed clusters (Figure 1(A)). Marking the
boundaries in the desired polygonal shape is accomplished
by simple mouse clicks to cover the area of interest (clus-
ters). Figure 8(b) shows the widgets used to select a cluster’s

Fig. 7. Visualization of the 3-channel LiCoO2 dataset. (Left) the MTE
in the DGBC (correlation-based) arrangement of the channels on the
MTE boundary, (right) the corresponding volume rendering. The DGBC
rendering better differentiates Co and so provides higher contrast for Al.

(a) (b)

Fig. 8. The two colorization modes, both showing the RadViz (GBC)-
type embedding of a sampled subset of the volume data: (a) Automated
mode with HS colormap; voxels mapped to a specific location will be
given the color associated with that location. (b) Manual (brushing)
mode with no colormap; the user has selected three regions and voxels
mapped into these regions will be tagged in the associated color.

information and the polygonal shape used to define it. To
label a cluster, users can pick from a set of default colors or
choose a color from a pop-up color selection pad.

Color Map Rotation: Users might have a preference for
the colors assigned to certain channels. For this purpose, we
provide a ROTATE widget option as shown in Figure 1(G) by
which users can rotate the channels around the MTE bound-
ary and so change the mapping. The scientists we worked
with very much liked this flexibility as it enabled them to
enforce common conventions in their field. Figure 14(a) is
the result of Ce being projected to the bottom of the circular
colormap, whereas Figure 14(b) is an outcome of Ce being
mapped to the right of the colormap. This paradigm can also
benefit individuals blind to certain colors. They can simply
rotate the map to avoid these colors or color combinations
when generating the volumetric image.

5.3 Our Multivariate Volume Renderer
We chose a post-classified raycasting paradigm where a
color is assigned to a ray sample after interpolating the mul-
tivariate volume. This rendering pipeline is fairly straight-
forward to implement on the GPU. Once the volume file is
loaded into GPU memory as a texture, it is sampled along
the rays at regular intervals. Volumetric information along
with other parameters provided by the MTE is collectively
used to generate a ray sample’s color and opacity which is
then composited in the fragment shader with the respective
values aggregated so far. We use front to back compositing
which allows the cumulative opacity to be tracked and the
computation along a ray terminated when the accumulated
opacity gets close to 1.0.

5.3.1 Interactions and User Interface
We added several interactions to the renderer to help users
explore the data; many of these are tied to MTE-based
interactions. We describe these now in the following.
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Fig. 9. Different opacity settings for the LiCoO2 dataset: (a) 0.99, (b) 0.51, (c) 0.25, (d) 0.15, (e) 0.1, (f) 0.04. Lower opacity settings allow the
visualization of interior structures. One can simply move the opacity slider back and forth to appreciate the spatial relations of these structures.

(a) (b) (c) (d) (e)
Fig. 10. Renderings of the Hard X-ray dataset achieved with data-driven alpha-blending. In all images the colors are generated with the MTE color
mapping as described (a) using Ce as the alpha channel, (b) using Co, (c) using Fe, (d) using Gd and (e) using the average of all attribute channels.

Data Driven Alpha Blending: Opacity weighting is a
powerful technique for emphasizing volumetric structures
of importance. We provide a widget OPACITY as shown in
Figure 1(E) where users can set the alpha-value used in the
compositing at all steps of the ray. Figure 9 shows a set of
example renderings achieved with different opacity settings.
We observe that setting the opacity to lower values allows
an efficient visualization of interior structures.

Our application also allows users to choose one or more
of the volume channel attributes as the opacity channel.
Figure 10 shows an example using the multi-modal X-
ray data set described in Section 6.2. It shows renderings
produced with either one or all volume attributes being
used for the alpha compositing. Figure 10(a) is the output
obtained when all of the four material channel data are
mapped to color and Ce is used for the alpha computation.
Equivalent outcomes for other attributes serving as opacity
are shown for Co, Fe and Gd in Figure 10(b) - (d) respectively.
In each case, the generated image shows a resemblance
to the texture structure of the respective channel used for
alpha weighting. We found that this mode can be useful to
recognize the spatial organization of specific channels.

To consider the effect of all of the attributes on the dis-
played volumetric structure, we perform alpha blending of
the average of all attribute channels, using an average sum
of these for alpha. Figure 10(e) shows an example of this
using the same dataset. We can see that the patterns present
in Figure 10(a) and (c) are missing in Figure 10(b) and (d),
but are present in Figure 10(e). We use the combined channel
alpha-average as the rendering mode throughout the paper.

Clipping: To allow users to explore the inner composi-
tion within cross-sections of the volume, we added clipping
as an additional functionality. Clipping can occur along both
an axis and a general plane. As shown in Figure 1(H), a
drop-down widget lets the user select either the Axis or the
Planar option for clipping. Figure 13(c, d) shows an example
of planar clipping where the clipping is perpendicular to the
plane formed by the values assigned to X CLIP, Y CLIP, and
Z CLIP.

5.4 System Implementation and Scalabilty

We implemented our system as a web-based framework to
gain platform independence (DG5). We used WebGL and
a higher-level API built on WebGL, ThreeJs. The major
advantage of WebGL is that it runs under the control of the
browser and has no direct communication with the underly-
ing operating system. We store the multivariate volumetric
data as 4-channel RGBA image textures. If the number of
channels in the visualized compound of materials is greater
than four we generate another image texture. The texture
image loaded with the channel information is fed into the
WebGL framework for multiresolution interpolation, then
mapped to the HSL colormap for interpolation, and the
resulting color is composited with the evolving image. All
of these operations are solely GPU-based; not much com-
plexity is involved in the rendering pipeline.

Since the user interface design capabilities of WebGL are
limited we implemented the MTE in javascript aided by
the D3.js library. Hence, all user interactions with the MTE,
such as brushing and lensing occur on the client-side CPU.
On the other hand, the volume-side interactions, such as
clipping, occur on the GPU. To inform the GPU rendering
of MTE interactions we keep a shadow MTE process on
the GPU. Any CPU-side user interaction with the MTE is
rapidly communicated to the GPU shadow process and is
reflected in the next rendering pass. There is only negligible
overhead associated with this tandem process and so the
rendering framerate is not visibly affected.

Scalability: The datasets we studied with our domain
collaborators typically had 3-4 channels. To test scalability to
a greater number of channels we tested our system with a 9-
channel dataset we obtained from another collaborator. The
dataset was acquired with a Micro X-ray fluorescence sys-
tem and captures the elemental distributions in spheroids
of human neuroblastoma cells. These cells are composed of
nine elements: Zn, Si, Fe, Ni, Cl, Ti, Ca, Cr, and Cu. The
volume visualizations we created can aid in studies investi-
gating the role of trace elements in Neuroblastoma [44]. The
results are shown in Figure 11. The number of frames per
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Fig. 11. Scalability of our system tested with a neuroblastoma cell
dataset with 9 elements: Zn, Si, Fe, Ni, Cl, Ti, Ca, Cr, Cu. (Left) the MTE
configured into 9 channels, (right) the associated volume rendering. One
can clearly observe distinct substructures, distributions, and associa-
tions. The MTE can be used to look up their chemical compositions.

second was in the range of 45 - 60 in all of the three case
studies we undertook. We did not notice a significant drop
in framerate.

The theoretical limit of the MTE with regards to the
number of attributes it can represent has already been
assessed by Cheng et al. [42] using perceptual arguments for
the CIE LUV color space. There, assuming the just noticeable
difference (JND) of about 13 the number of distinguishable
primaries in a ring layout with uniform spacing is about
35. While we use a less perceptual color space even half
that number is not overly likely to occur in our current
target field, even when additional channels are derived from
the present data such as gradients or time. This number is
potentially even higher with the correlation-based DGBC
channel node spacing on the MTE boundary.

6 RESULTS FROM FOUR STUDY APPLICATIONS

Throughout the course of system development, we had
several meetings with two teams of material scientists. Each
scientist had ten or more years of experience in the field of
material science. The meetings were separate since the two
teams work at different geographic locations, with different
imaging modalities, and have different research goals and
approaches. Yet, both teams share a common goal, namely,
finding better and more cost-efficient materials for batteries.

Each meeting session was about 1-2 hours long and was
conducted over the web. Following each session, we would
then expand our tool with new functionalities that we felt
addressed the issues raised. Each new version we produced
usually not only satisfied these issues but also stimulated
new ideas, and occasionally the outcomes of these sessions
were surprising and unanticipated. Eventually, the tool met
all, or at least the great majority, of the domain scientists’
expectations. The results and insights presented in the fol-
lowing are the results of the final evaluations of our tool
with three of the most frequently used datasets.

6.1 Chemically Sensitive Electron Tomography Study
The subject of this study was a four-channel lithium-ion
battery volumetric dataset, acquired via chemically sensitive
electron tomography. Of interest was the cathode material,
composed of Lithium (Li), Manganese (Mn), Nickel (Ni),
Cobalt (Co), and Oxygen (O). We used our tool to diagnose
the cathode material’s synthesis process and the distribution
of materials in the imaged sample. The exploration was

(a) (b)

Fig. 12. Multivariate volume rendering of the four-channel lithium-ion
battery dataset. The opacity was set to reveal the sample’s surface.
View (a) shows that the sample is rich in Mn (green) and NiO (blue).
View (b) shows that there is a fairly high presence of desirable Co
and Mn (yellowish) but also the less desirable NiO (for the MTE’s color
assignment refer to Figure 2(B)).

motivated by the quest to find a substitute for Cobalt; a
material that could deliver more charge or energy and at
the same time would be economically more viable.

Some of the composites we found were Ni, Mn and
Cobalt Oxide. As mentioned, the overarching goal is to
replace the large portion of Co with a mix of Mn and Co;
it would improve the charge density which is the measure
of how much charge one can pull out per unit weight. Most
electric cars, such as Tesla, use a combination of materials
in their batteries, prominently Li, Ni, Mn, Co, and O because
they are cheaper and have higher charge density. Our tool’s
role was to help engineers determine whether the cathode
materials were synthesized properly or not, and if not,
which of the synthesized elements was not desirable.

The data for this case study was composed of an image
stack of four elements: Mn, Ni, Co, and O. It lacked Li
since the engineers were unable to map out the Li in the
compound. The images were of size 204 × 204; there were
128 slices in total and the voxel size was 1.5 nm x 1.5 nm x
1.5 nm. The dataset fully reconstructed the cation and anion
distributions of technologically relevant primary particles
with a material density of 4.93 g/cm3.

Figure 1 (C) shows one of the visualizations we created
together with the scientists. All visualizations we demon-
strate in this section use the colormap and information
display shown in this figure. The various visualizations
that were produced revealed the spatial distribution of
all materials in the volume. In general, for a synthesized
material to be desirable and suitable for use in lithium-ion
batteries, there should be chemical homogeneity. As shown
in Figure 12(a), one side of the surface is mostly greenish in
color which shows an abundance of Mn, whereas the other
side of the volume as shown in Figure 12(b) has a yellowish
distribution which suggests the presence of desirable Co and
Mn-rich regions in the material. But it also has a (smaller)
blueish region, which is mostly Nickel Oxide (NiO). This
distribution is also seen in the MTE display of Figure 1(B).

The volume visualization helped the scientists to quickly
recognize that this cathode material’s surface was chemi-
cally heterogeneous which they say is not overly desirable.
The early diagnosis was made possible through the simulta-
neous visualization of all four channels; it can accommodate
all chemical compositions, which is the primary goal of this
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Fig. 13. Multivariate volume rendering of the lithium-ion battery sample. (a) Setting a low opacity threshold (0.05) reveals interesting interior
structures (indicated by arrows). (b) Using the lens confirms that one of the embedded structures is metallic cobalt. (d-d) Subsequent clipping
then fully exposes their presence, namely (c) metallic cobalt and (d) nickel-rich magnesium in the core of the sample. Both discoveries point to
deficiencies in the sample’s synthesis process. (Not all images were taken from the same viewpoint.)

analysis. The images readily show that there is no strong
presence of Ni, while the presence of Mn and CoMn is quite
rich, which is the desired structure for this cathode material.

Next, the scientists wanted to explore the inner compo-
sition of the volume. They first used the opacity slider to
reveal the inner structures and visually detected an orange-
yellow cluster as well as a greenish cluster, both faintly
shining through (see arrows in Figure 13(a)). They moved
the lens to critical regions on the MTE to confirm the
chemical substance of these structures. This is shown in
Figure 13(b) for the orange-yellow cluster which is identified
as metallic cobalt. They then used our tool’s clipping feature
to ”excavate” these findings. On that journey they were
able to fully identify both the orange-yellow Co-rich cluster
embedded deep in the material sample (Figure 13(c)) and
the greenish deeply embedded NiMn cluster (Figure 13(d)).
This was a very insightful finding since it is undesirable
and not expected to see any pure metallic clusters in a
sample. The scientists concluded that there was a limitation
in oxygen diffusion in the material’s synthesis process. It
meant that both metallic cobalt and nickel-rich magnesium
existed in the cathode oxide materials even though the
materials were calcined in oxygen. It seemed highly certain
that there was an oxygen deficiency in the process of calci-
nation, a high temperature heating process used for thermal
treatment in the absence or limited supply of air or oxygen
and applied to ores and other solid materials to bring about
a thermal decomposition. The visual examination of our
renderings helped the scientists diagnose that the synthesis
process had problems since the generated materials were
not synthesized as intended.

6.2 Phase Detection in Multimodal Hard X-Ray Data

This use case stems from our most recent session with the
other team of material scientists we have been working
with. They seek to investigate the effectiveness of multi-
modal imaging at the nanometer scale and the formation
of grain boundaries formed by complex interfacial charac-
teristics. Analyzing these images helps them observe phe-
nomena related to energy conversion and storage in solid
oxide fuel cells [45].

In this use case, the primary goal has been to learn about
the elemental diffusion and phase separation which can
lead to the formation of additional material phases at the
grain boundary. The formation of additional material phases

is believed to play an important role in determining the
ultimate electron and ion transport properties of the imaged
material [46]. The data consisted of fluorescence slice images
of Cerium (Ce), Cobalt (Co), Iron (Fe), and Gadolinium (Gd);
the slice image size was 150× 150 pixels and there were 90
slices in total. Platinum (Pt) serves as a foreign element for
sample preparation but is not considered in this analysis.

Our collaborators told us that with the help of their
current tool [46], they were able to detect three different
phases by analyzing the fact that Gd and Ce are not com-
pletely correlated, and neither are Co and Fe which led to
the formation of two material phases throughout. Having no
correlation among these two phases led to the formation of a
third phase which they reported in their analysis. However,
finding these material phases was tedious with current
tools, especially when the number of elements exceeded
three and they could no longer resort to RGB encoding.

With the help of our tool, they were able to find new ma-
terial phases quite easily. This is evident from Figure 14(a)
which is dominated by two material phases, visually en-
coded in Cyan and Blue, respectively. We used the equidis-
tant GBC layout in the MTE to achieve a distinct coloring for
the four elements in the volume display. The visualization
also readily reveals the presence of the third phase, colored
orange and distributed throughout the volume.

The lack of correlation between these materials leading
to the generation of the current phases is also evident in the
visualization generated with the correlation-based (DGBC)
layout. Shown in Figure 14(b) we quickly see that Co and
Fe as well as Gd and Ce are well separated on the MTE
boundary. This is consistent with previous analyses [46].

Apart from showing consistency with previous findings,
our tool also gave an interesting new insight, namely the
presence of a fourth phase, colored in a faint magenta in
Figure 14(a), indicated by a circle. However, this phase is
not clearly visible and needs an extra careful observation to
become more evident. It is because the material responsible
for this phase is present at a smaller ratio which leads the
corresponding voxels to map somewhere near the center
of the HSL colormap. As a consequence, the points are
desaturated and become achromatic (Gray).

To address this issue, we switched to the manual color-
ing mode. It allows an assignment of similar color values to
all selected voxels, making it easier to highlight the voxels
nearer to the center. Highlighting such voxels in this case
helps in investigating the formation of phases composed
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(a)

(b)

(c)
Fig. 14. Hard X-ray dataset with four materials Ce, Co, Fe and Gd. (a)
Visualization using the GBC layout shows the presence of 3 phases and
even indicates the presence of a 4th phase in a faint magenta (circled).
(b) The DGBC layout explains the reason for the existence of phases, i.e.
the lack of correlation between materials. (c) Visualization after manual
coloring highlights the four phases discovered in (a) more prominently.

of lesser dominant materials. The outcome of this manual
coloring can be seen in Figure 14(c) where the fourth phase
is now clearly evident in red color.

6.3 Trace Doping of LiCoO2 in a Lithium-ion Battery
We also evaluated our tool on a dataset of LiCoO2 which
is a dominant cathode material for lithium-ion batteries.
The goal of this study was to investigate the elemental
distribution of Ti-Mg-Al co-doped LiCoO2 (TMA-LCO) to
learn more about its surface stability which is important
for building cathode materials with higher voltage charging
capacity and larger reversible capacity. At higher voltage,
internal strain builds up, and oxygen loss brings irreversible
phase transitions. These lead to surface instabilities which in
turn lead to serious performance degradation of LiCoO2.

(a) (b)

Fig. 15. LiCoO2 dataset (a) Volumetric structure for Ti (red), Co
(turquoise), and Al (dark blue) highlighting the material composition and
locations in the volume. (b) The Ti component is highlighted in red using
the lens and the magnitude min-max filtering operations to show its
separate presence on the particle surface.

We visualized the foreign element doping strategy which
has been demonstrated to be highly promising and effective
for the improvement of the electrochemical performance of
LiCoO2 [4]. To study the spatial elemental distribution, the
scientists did a fluorescence mapping of the doped material
and collected stacks of Al, Co, and Ti (Titanium) images for
analysis. The images were of size 100× 100 and there were
100 slices in total. The volume visualization generated from
this dataset in Figure 15(a) shows the elemental distribution
of the three elements using GBC mapping (the MTE is
shown in Figure 4). It is evident from Figure 15(a) that Al
(dark blue) and Co (turquoise) are distributed throughout
the entire particle which is consistent with the findings from
experiments by Zhang et al. [4].

An interesting finding is the distribution of Ti (red)
which appears largely separated into smaller groups on the
surface, as is clearly shown in Figure 15(b). This figure is
a refinement of Figure 4(c), created by first placing a lens
over the area around the MTE’s Ti channel node and then
restricting the volume rendering to high-magnitude samples
by the magnitude min-max slider (Figure 1(E)). The sepa-
rated presence of the Ti-rich phase on the surface ascribes to
the long-term stability of LiCoO2 by effectively reducing
the lattice breathing and making it robust against lattice
strain and particle fracture. The conclusion is consistent with
experiments done by Zhang et al. over many TMA-LCO
particles, confirming the heterogeneous distribution of Ti.

6.4 Hurricane Isabel Dataset

To show the generality of our tool, we also visu-
alize the Hurricane Isabel dataset from a simulation
in 2003. It includes data for a 2,139 km (east-west)
× 2,004 km (north-south) × 19.8 km (vertical) vol-
ume. The simulation data is from the National Cen-
ter for Atmospheric Research (https://ncar.ucar.edu/),
and it was used in the IEEE Visualization contest 2004
(http://vis.computer.org/vis2004contest). We used 4 di-
mensions. i.e, pressure, temperature, wind speed magni-
tude, and water vapor mixing ratio (QVAPOR). The other
variables had only low variability. The panels and caption
in Figure 16 illustrate how valuable insight can quickly be
obtained with just a few lens and slider interactions.
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Fig. 16. Hurricane Isabel dataset. During setup, we noticed that of the 13 variables, only 4 (temperature, speed, pressure, and vapor) had significant
variation and so we focused on these 4 to make the best use of the MTE’s real estate. (g-h) MTE and generic rendering with the min/max value
ranges indicated by the two slider settings on top of the image. Even from this “out of the box” rendering it is already apparent that the eye is
dominated by temperature (light blue to green color) while the eye’s periphery adds yellow to the green indicating a growing dominance of speed.
Indeed, the wall around the eye is typically the storm’s strongest part and it pulls in warmer ocean water that increases the temperature in the eye.
As the water is pulled up, moving further away from the eye the vapor is increasing (blue-tone colors) and finally the pressure (red-tone color). (a-f)
Lens-driven renderings where we more clearly observe the high temperature in the eye (a-b), a classic cloud rendering of the vapor in grey-blue
(c-d), and the pressure-dominated outer periphery in red-orange (e-f). (j-l) Colorizations using the manual brushings shown in (i) with different
min-value slider settings; the regions with speed-dominated data are colored into blue. (k) has the higher min-value which only allows the higher
speed values to render, indicating the high speed near the storm’s eye. (l) rotated visualization allowing a clearer view into the storm’s lower layers.

7 COMPARISON WITH OTHER MODALITIES

Apart from RadViz, there are other multivariate visualiza-
tion interfaces that maintain the relationships of the chan-
nels and the samples. An obvious choice here is the method
of Parallel Coordinates (PC) [47] which has been used by
Wang et al. [25] and Guo et al. [24] aided by additional
interactive displays (see Section 3). As argued in Section
3 we chose RadViz over PC mainly because of its ease of
interaction. In the following, we present a comparison of
PC with our RadViz-based MTE interface with regards to
the faithfulness of the colorization that can be achieved.

To provide a fair comparison we used a PC implemen-
tation with similar capabilities than our RadViz-based MTE,
which essentially is the vanilla implementation. For each
axis we assigned a hue equivalent to the respective channel
node in the MTE. The saturation decreased with the data
point’s channel value just like in the MTE along the radial
line toward the RadViz center. A sample’s RGB color is
then the sum of the RGB colors interpolated on each axis,
subsequently normalized. Figure 17(e) shows the colored PC
display for the Hard X-Ray dataset (see Section 6.2).

Figure 17(a) shows the colorization results obtained with
our system while Figure 17(b) shows the equivalent result
obtained with the PC implementation. We observe signifi-
cant differences with regards to fine detail resolution. The
PC-based colorization appears more blurry and washed
out, some detail is missing, and most importantly it cannot
resolve the 4th phase (circled in Figure 14(a)). It essentially
uses the same or very similar colors than for the 3rd phase.

Figure 17(d) plots the PC-colored points into the RadViz
display. It can be easily noticed that they do not have the
level of brightness uniformity and hue separability than the
points in the MTE-based representation (Figure 17(c)). This
is probably because the summation process in the PC does
not provide the proper constraints for this. Conversely, by
mapping the points directly into the HSL map their hues are
more distinguishable and their brightness is similar.

7.1 Parallel Coordinates as a Free-Form Lens
For study purposes we also implemented an additional
workflow where we used the parallel coordinates interface
to brush data points by channel value, and then mapped
these vectors into the MTE for colorization. Only the points
selected appeared in the MTE and so these brushing oper-
ations essentially acted as a free-form lens. In addition, we
also added a vector magnitude axis which served the role of
the two magnitude sliders in Figure 1(E).

Akin to what has been reported in Bertini et al. [26], the
interactions are more tedious since the user now needs to
modify each axis to define a subset of data points and also
the neighborhood relations are not as easily seen than on the
RadViz display. But we found that it does allow for a more
precise definition of neighborhoods in the MTE than what
can be achieved with the circular lenses, and the scientists
appreciated these capabilities as a verification tool.

It should be noted, however, that these more general
regions can also be defined with our polygonal brushing
tool (see Fig. 14(c)) although the colors assigned to these
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(a) (b) (c) (d) (e)

Fig. 17. Comparing the use of RadViz with Parallel Coordinates (PC) for data-driven colorization tasks, using the Hard X-Ray dataset. Rendering
with (a) our RadViz-based MTE and (b) PC – the colors appear blotchy and the 4th phase is not differentiated (also refer to Figure 14(a)). (c-d) A
RadViz-projection of the data points colored with (c) our MTE and (d) PC – the points are less differentiated by hue and vary in brightness. This
explains the colorization deficiencies of PC. (e) PC display – each axis is assigned to a color ramp where the primary color is the same than for the
respective channel node in the MTE.

regions are uniform, similar to those by Wang et al. [25] and
Guo et al. [24].

8 EVALUATION

It became clear that the scientists we worked with all
preferred the following workflow. They would begin with
an automated colorization to produce volume renderings
that would give a good overview of possible interesting
phenomena, such as material phase changes. The next step
commonly was to use lensing and clipping to isolate certain
structures in the volume. These activities seemed to help
the domain experts to learn about the distributions in in-
formation space and link them to their spatial renditions,
using the color as a bridge. Finally, they would switch to
the brushing interface and tag the spatial discoveries they
made in solid color. This workflow follows the design goals
DG1-DG4 presented in Section 4 in order.

8.1 Questionnaire and User Feedback
During one of the final sessions we asked each of the two
teams for feedback on the following questionnaire:
Q1: Does our visualization tool help you in studying the
composition of multivariate chemical data?
Q2: Would you consider using our tool in your work?
Q3: If yes, what do you feel is different when using our tool
as compared to the existing tool you use for the same work?
Q4: Are there any significant changes or additional func-
tionalities you would like to see in our tool in the future?

For both Q1 and Q2 both teams responded with a re-
sounding yes. As for Q3, their current practice was to look
at the different channels as separate volumes and examine
them one by one or side by side. This made it difficult to
notice the subtle interplay of all of the chemicals in 3D space.
With our tool, on the other hand, they could fluidly examine
the multi-material data in one picture, without needing to
tediously switch from channel to channel. One of the teams
specifically mentioned that they thought of our interface as
a one-stop-shopping experience. They could pursue initial
hunches, then refine, accept, or reject them, and if there was
merit they could go all the way to full documentation of
these findings, using our manual colorization interface.

All scientists stated without hesitation that our tool can
save them a tremendous amount of time and effort. While
they could find most of the structures reported in the paper
before, it took them a long time to do so, on the order of
days and even weeks. Our tool allowed them to find these
same structures within 10-15 minutes, and in a publishable

format to boot. Essentially, our tool significantly accelerates
time to discover which in consequence has the propensity
to accelerate science, achieving progress at a faster speed. In
addition, we also observed that, afforded by our streamlined
interface, there is also a potential for new discoveries. We
saw some onsets of this already in our evaluation sessions
(for example, the discovery of a 4th phase, see Section 6.2).

When asked what features they would like to see im-
plemented (Q4) one of the scientists said that he would
welcome a histogram augmented with a range selection
slider for each channel. Since this is essentially a 1D transfer
function we asked if he would prefer this selection interface
over the MTE. He replied that he would see it mainly
as a complementary feature for additional information. To
address this need, we re-purposed the parallel coordinate
interface as discussed in Section 7.1.

9 DISCUSSION AND LIMITATIONS

Our method shares a common problem of post-classified
semi-transparent volume rendering where an interpolated
scalar sample receives a color via a transfer function’s color
map which is subsequently blended with another sample’s
color along the ray. Assume there are two materials and the
colors assigned are blue and red; mixing these two colors in
semi-transparent rendering mode results in the (secondary)
color purple. Similarly, yellow and red color mix to orange.
If a third material were assigned the color purple or the
color orange ambiguities could arise. These effects are well
known and several solutions have been proposed (see [48]),
and we plan to incorporate one of these into a future
implementation of our software. For now, user interactions
we provide, such as volume rotation, slicing, and value
range selection as well as MTE lensing and rotation can help
resolve ambiguities of this nature if they occur.

For some of the images the regional boundaries appear
somewhat fluid and unsharp. This is due to the continuous
color mapping in the MTE which assigns smoothly chang-
ing colors to adjacent volume points in areas where the
material composition gradually changes. It is a consequence
of the partial volume effect which is further amplified in our
case since a volume point is a vector of several materials
and not just a scalar density. In contrast, transfer functions
used in conventional volume rendering often use uniform
solid colors (with perhaps some fading at the density-range
edges) for a range of density values. The approaches of
Wang et al. [25] and Guo et al. [24] also make these kinds of
uniform color assignments to segmented regions in the data
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space, and as a consequence these displays appear sharper.
Notably, our polygonal brushing tool achieves similar ef-
fects especially when the polygonal regions have some gaps
between them, as can be seen in Fig. 14c.

We currently use opacity only in a uniform way as a
means to allow the visualization of structures deeper in the
volume via making the outer volume layers more transpar-
ent. This turned out to be a helpful function in the discovery
of hidden interior structures, as illustrated in Fig. 13. A more
sophisticated opacity-driven enhancements might associate
a lens with an opacity slider such that the visibility of
the points covered by the lens could be more specifically
controlled. Or one might associate opacity transfer functions
with the axes of the proposed parallel coordinate-based
interaction tool. This would not be difficult to implement
and we plan this as a future extension.

For the coupled MTE-PC display one could imagine a
bidirectional workflow in which a user would first use a
circular lens in the RadViz display and then refine these
vectors further in the PC interface, and vice versa. It would
unify the strengths of both displays and would be a novel
application of the two coordinated displays not mentioned
by Bertini et al. In this scheme, the RadViz-based lens would
capture groups of similar points and the PC lens would
refine this group. The volume rendering would then provide
real-time feedback for both of these lenses and support the
user in refining the volumetric structures.

Finally, a future version will also include an option to
set the background of the volume rendering to either black
or white. Studies have shown that users prefer a black
background for its aesthetics, but also believe that a white
background makes small detail more discriminable [49].

10 CONCLUSIONS

We have presented a methodology and tool that allows the
visualization of multivariate (multi-channel) volume data
with full awareness of the contributions of the individual
channel attributes. We achieve this by fusing a traditional
GPU-accelerated volume renderer with an information vi-
sualization front-end that allows users to assign colors and
opacities to voxel vectors according to their multivariate
value distributions and attribute relations. The information
visualization interface, fused with a colormap and aug-
mented by various interactive filtering facilities, links the
statistical characteristics of the multivariate volume data
with their appearance characteristics in the spatial domain.

A particular strength of our tool is that by fusing com-
plex volumetric multivariate data into a single display the
time to discovery can be significantly sped up. This in
consequence allows science to progress at a faster speed. In
fact, our tool has already led to the discovery of potentially
new insight, facilitated by its ease of use.

Even though we have evaluated our tool mainly in ma-
terial science, we believe that it can be applied in any other
domain that has challenges in the analysis of multivariate
volumetric data. Especially suitable are fields that acquire
volumetric data by ways of multi-valued or multi-modal
scanning, such as industrial CT, medicine, or bio-science. We
have already presented an application for the latter in Fig.
11. But even atmospheric science or meteorology (see Fig.

16) which acquire or simulate multi-valued data on large
scale grids could benefit from our general methodology. We
plan to study these types of data in the future.
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